
Public

SMART CONTRACT AUDIT REPORT

for

CUSD Token

Prepared By: Patrick Liu

PeckShield
March 4, 2022

1/20 PeckShield Audit Report #: 2022-066

contact@peckshield.com

Public

Document Properties

Client Coin98
Title Smart Contract Audit Report
Target CUSD Token
Version 1.0
Author Jing Wang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Patrick Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 March 4, 2022 Jing Wang Final Release

1.0-rc March 2, 2022 Jing Wang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Liu
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2022-066

Public

Contents

1 Introduction 4
1.1 About CUSD Token . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20 Compliance Checks 10

4 Detailed Results 13
4.1 Trust Issue Of Admin Roles . 13
4.2 Constant/Immutable States If Fixed Or Set at Constructor() 15
4.3 Safe-Version Replacement With safeTransfer() . 16

5 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2022-066

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the CUSD Token

contract, we outline in the report our systematic method to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistency between smart contract code
and the documentation, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of the smart contract can be further improved due to the
presence of certain issues related to ERC20-compliance, security, or performance. This document
outlines our audit results.

1.1 About CUSD Token

CUSD Token is an ERC20-compliant stablecoin that is closely related to the Coin98 protocol’s contract
in minting tokens. The main functionality includes full ERC20 compatibility with additional extensions
that are designed to mint a corresponding number of CUSD tokens based on market price of Coin98

tokens.
The basic information of CUSD Token is as follows:

Table 1.1: Basic Information of CUSD Token

Item Description
Name Coin98
Type Ethereum ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date March 4, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/coin98/coin98-eco-currency-contract.git (bd95503)

4/20 PeckShield Audit Report #: 2022-066

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/coin98/coin98-eco-currency-contract.git (09c4a33)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

5/20 PeckShield Audit Report #: 2022-066

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe

6/20 PeckShield Audit Report #: 2022-066

Public

regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2022-066

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the CUSD contract. During the first phase of our
audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 1

Informational 1

Total 3

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions are in Section 4.

8/20 PeckShield Audit Report #: 2022-066

Public

2.2 Key Findings

Overall, no ERC20 compliance issue was found, and our detailed checklist can be found in Section
3. However, the smart contract implementation can be improved because of the existence of 1
medium-severity vulnerability, 1 low-severity vulnerability, and 1 informational recommendations.

Table 2.1: Key CUSD Token Audit Findings

ID Severity Title Category Status
PVE-001 Medium Trust Issue Of Admin Roles Security Features Confirmed
PVE-002 Informational Constant/Immutable States If Fixed

Or Set at Constructor()
Coding Practices Fixed

PVE-003 Low Safe-Version Replacement With safe-
Transfer()

Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for our detailed compliance checks and Section 4 for elaboration of reported issues.

9/20 PeckShield Audit Report #: 2022-066

Public

3 | ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20-compliant. Naturally, as the first step of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited CUSD Token. In the surrounding two tables, we outline the respective list of basic view

-only functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-

10/20 PeckShield Audit Report #: 2022-066

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

11/20 PeckShield Audit Report #: 2022-066

Public

adopted ERC20 specification. In addition, we perform a further examination on certain features
that are permitted by the ERC20 specification or even further extended in follow-up refinements and
enhancements (e.g., ERC777/ERC2222), but not required for implementation. These features are
generally helpful, but may also impact or bring certain incompatibility with current DeFi protocols.
Therefore, we consider it is important to highlight them as well. This list is shown in Table 3.3.

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

✓

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

✓

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the users to burn tokens of a specific address ✓

12/20 PeckShield Audit Report #: 2022-066

Public

4 | Detailed Results

4.1 Trust Issue Of Admin Roles

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: CUSD

• Category: Security Features [3]

• CWE subcategory: CWE-287 [2]

Description

In the CUSD token contract, there is a privileged owner account (assigned in the constructor) that plays
a critical role in governing and regulating the token-related operations (e.g., account blacklisting,
funds withdrawing and token minting).

To elaborate, we show below the privileged functions in the CUSD contract.

543 /**
544 * @dev Adds account to blacklist
545 * @param account_ The address to blacklist
546 */
547 function blacklist(address account_) external onlyOwner {
548 _blacklisted[account_] = true;
549 emit Blacklisted(account_);
550 }
551
552 /**
553 * @dev Removes account from blacklist
554 * @param account_ The address to remove from the blacklist
555 */
556 function unBlacklist(address account_) external onlyOwner {
557 _blacklisted[account_] = false;
558 emit UnBlacklisted(account_);
559 }

Listing 4.1: CUSD::blacklist()and unBlacklist()

13/20 PeckShield Audit Report #: 2022-066

Public

570 /// @dev withdraw token from contract
571 /// @param token_ address of the token , use address (0) to withdraw gas token
572 /// @param destination_ recipient address to receive the fund
573 /// @param amount_ amount of fund to withdraw
574 function withdraw(address token_ , address destination_ , uint256 amount_) external

onlyOwner {
575 require(destination_ != address (0), "Withdrawable: Destination is zero address");
576
577 uint256 availableAmount;
578 if(token_ == address (0)) {
579 availableAmount = address(this).balance;
580 } else {
581 availableAmount = IERC20(token_).balanceOf(address(this));
582 }
583
584 require(amount_ <= availableAmount , "Withdrawable: Not enough balance");
585
586 if(token_ == address (0)) {
587 destination_.call{value:amount_ }("");
588 } else {
589 IERC20(token_).transfer(destination_ , amount_);
590 }
591
592 emit Withdrawn(_msgSender (), destination_ , token_ , amount_);
593 }
594
595 /// @dev withdraw NFT from contract
596 /// @param token_ address of the token , use address (0) to withdraw gas token
597 /// @param destination_ recipient address to receive the fund
598 /// @param tokenId_ ID of NFT to withdraw
599 function withdrawNft(address token_ , address destination_ , uint256 tokenId_) external

onlyOwner {
600 require(destination_ != address (0), "Withdrawable: destination is zero address");
601
602 IERC721(token_).transferFrom(address(this), destination_ , tokenId_);
603
604 emit Withdrawn(_msgSender (), destination_ , token_ , 1);
605 }

Listing 4.2: CUSD::withdraw()and withdrawNft()

885 function setMinter(address newMinter) public onlyOwner {
886 address oldMinter = _minter;
887 _minter = newMinter;
888 emit MinterUpdated(oldMinter , newMinter);
889 }
890
891 function mint(address account , uint256 amount) public
892 onlyMinter
893 notBlacklisted(_msgSender ())
894 notBlacklisted(account)
895 {
896 _mint(account , amount);

14/20 PeckShield Audit Report #: 2022-066

Public

897 }

Listing 4.3: CUSD::setMinter()and mint()

We understand the need of the privileged functions for contract upgrade, but at the same time
the extra power to the admin roles may also be a counter-party risk to the contract users. It is
worrisome if the privileged owner account is a plain EOA account. Note that a multi-sig account
could greatly alleviate this concern, though it is still far from perfect. Specifically, a better approach
is to eliminate the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance. Also list keeper accounts granted
by owner explicitly to users.

Status This issue has been confirmed by the teams. And the team clarifies a multi-sig contract
will be assigned to be owner of the contract after deployment.

4.2 Constant/Immutable States If Fixed Or Set at
Constructor()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CUSD

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

15/20 PeckShield Audit Report #: 2022-066

Public

In the following, we show the key state variables defined in CUSD. If there is no need to dynamically
update these key state variables, e.g., _name and _symbol, they can be declared as immutable for gas
efficiency.

In addition, we notice the state variable _decimals is a constant and we can simply define it as a
constant to avoid gas cost for the access.

632 contract CUSD is Context , Ownable , Pausable , Blacklistable , Withdrawable , IERC20 {
633 ...
634 string private _name;
635 string private _symbol;
636 uint8 private _decimals;
637 ..
638 }

Listing 4.4: CUSD.sol

Recommendation Revisit the state variable definition and make good use of immutable/constant
states.

Status This issue has been addressed in the following commit: 09c4a33.

4.3 Safe-Version Replacement With safeTransfer()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: CUSD

• Category: Coding Practices [4]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related code
snippet below.

121 /**
122 * @dev transfer token for a specified address
123 * @param _to The address to transfer to.
124 * @param _value The amount to be transferred.
125 */
126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {

16/20 PeckShield Audit Report #: 2022-066

https://github.com/coin98/coin98-eco-currency-contract/commit/09c4a33460b190a233617853f5159bf3c54694d1

Public

129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;
133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;
139 }

Listing 4.5: USDT Token Contract

It is important to note the transfer() function does not have a return value. However, the
IERC20 interface has defined the following transfer() interface with a bool return value: function

transfer(address to, uint tokens)virtual public returns (bool success). As a result, the call to
transfer() may expect a return value. With the lack of return value of USDT’s transfer(), the call
will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.
Similarly, there is a safe version of transferFrom() as well, i.e., safeTransferFrom().

In the following, we show the withdraw() routine in the CUSD contract. If USDT is given as token_,
the unsafe version of IERC20(token_).transfer(destination_, amount_) (line 589) may revert as there
is no return value in the USDT token contract’s transfer() implementation (but the IERC20 interface
expects a return value)!

570 /// @dev withdraw token from contract
571 /// @param token_ address of the token , use address (0) to withdraw gas token
572 /// @param destination_ recipient address to receive the fund
573 /// @param amount_ amount of fund to withdaw
574 function withdraw(address token_ , address destination_ , uint256 amount_) external

onlyOwner {
575 require(destination_ != address (0), "Withdrawable: Destination is zero address");
576
577 uint256 availableAmount;
578 if(token_ == address (0)) {
579 availableAmount = address(this).balance;
580 } else {
581 availableAmount = IERC20(token_).balanceOf(address(this));
582 }
583
584 require(amount_ <= availableAmount , "Withdrawable: Not enough balance");
585
586 if(token_ == address (0)) {
587 destination_.call{value:amount_ }("");

17/20 PeckShield Audit Report #: 2022-066

Public

588 } else {
589 IERC20(token_).transfer(destination_ , amount_);
590 }
591
592 emit Withdrawn(_msgSender (), destination_ , token_ , amount_);
593 }

Listing 4.6: CUSD::withdraw()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
transfer().

Status This issue has been fixed in the commit: 1a29562.

18/20 PeckShield Audit Report #: 2022-066

https://github.com/coin98/coin98-eco-currency-contract/commit/1a295623e61877d53d5198da8a6379bae49e5f0c

Public

5 | Conclusion

In this security audit, we have examined the design and implementation of the CUSD contract. During
our audit, we first checked all respects related to the compatibility of the ERC20 specification and
other known ERC20 pitfalls/vulnerabilities. We then proceeded to examine other areas such as
coding practices and business logics. Overall, although no critical or high level vulnerabilities were
discovered, we identified three issues that were promptly confirmed and addressed by the team. In
the meantime, as disclaimed in Section 1.4, we appreciate any constructive feedbacks or suggestions
about our findings, procedures, audit scope, etc.

19/20 PeckShield Audit Report #: 2022-066

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2022-066

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About CUSD Token
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Trust Issue Of Admin Roles
	Constant/Immutable States If Fixed Or Set at Constructor()
	Safe-Version Replacement With safeTransfer()

	Conclusion
	References

